РУКОВОДСТВО

по эксплуатации и обслуживанию контроллеров автоматического ввода резервного питания «Порто Франко» ABP11KH

Содержание

	Стр.
1. Введение	3
2. Назначение	3
3. Технические данные	3
4. Состав контроллера	4
5. Устройство и работа контроллера	4
6. Установка и подключение	18
7. Транспортирование и хранение	22

1. Введение

Настоящее руководство по эксплуатации распространяется на контроллер автоматического ввода резерва ABP11KH (в дальнейшем – контроллер) и содержит описание устройства и принципа действия, технические характеристики контроллера, а также другие сведения, необходимые для его эксплуатации.

В процессе хранения, транспортирования, работы и технического обслуживания контроллера должны соблюдаться требования, изложенные в настоящем документе.

2. Назначение

2.1 Контроллер предназначен для повышения надежности работы сети электроснабжения путём автоматического подключения к системе дополнительного источника питания в случае потери системой электроснабжения из-за аварии.

3. Технические данные

3.1 Контроллер выполняет функции измерения и контроля фазных напряжений источников электроснабжения, а также частоты переменного тока генераторной установки.

3.2 Контроллер выполняет автоматический запуск и контроль генераторной установки, используемой в качестве резервного источника питания при отключении или аварии основного питания.

3.3 Контроллер обладает программируемым входом для удалённого управления генераторной установкой.

3.4 Контроллер имеет встроенный регистратор событий с привязкой к реальному времени.

3.5 Контроллер может быть подключён к ПК для изменения параметров и обмена данными.

3.6 Основные технические характеристики приведены в таблице 3.1.

	таблица 5.1			
Технические характеристики				
Напряжение питания	8,5 - 17 VDC			
Максимальная мощность потребления	3 W			
Максимальное входное измеряемое напряжение	275 VAC L-N			
Частота переменного тока	45 - 65 Hz			
Метод измерения напряжения	RMS			
Ток программируемого входа	5 mA			
Контакты реле «Зажигание»	5 A / 24 VDC (DC1)			
Контакты реле «Стартер»	10 A / 24 VDC (DC1)			
Контакты реле «Топливная заслонка»	10 A / 24 VDC (DC1)			
Контакты реле управления силовыми контакторами	5 A / 250 VAC (AC1)			
Коммуникационный интерфейс	RS-485			
Протокол обмена данными	Modbus RTU			
Рабочий диапазон температур	-20+50°C			
Степень защиты корпуса	IP20			
Габаритные размеры корпуса без учёта креплений (В*Ш*Г)	208*170*79 мм			
Вес	1,3 кг			

Таблица 3.1

4. Состав контроллера

4.1 В состав комплекта контроллера входят следующие составные части и документация, подлежащие упаковке и поставке:

контроллер АВР11КН	1 шт.
запасной предохранитель 10А	1 шт.
руководство по эксплуатации	1 экз.

5. Устройство и работа контроллера

5.1 Конструкция контроллера.

5.1.1 Конструктивно устройство выполнено в металлическом корпусе прямоугольной формы и предназначено для установки на электрический щит. На фронтальной стороне расположена панель индикации и управления. Разъёмы подключения расположены с тыльной стороны. Внешний вид контроллера представлен на рис. 5.1.

Рис. 5.1. Внешний вид контроллера АВР.

5.2 Устройство контроллера.

Контролер АВР состоит из следующих функциональных узлов:

- плата контроллера;
- плата индикации и управления;

5.2.1 Плата контроллера реализована на базе производительного микроконтроллера и специализированных интегральных схем измерения и обработки сигнала. Плата контроллера реализует выполнение заданных алгоритмов работы устройства в различных режимах, а также выполняет следующие функции:

- измерение напряжений;
- измерение частоты;
- управление силовыми контакторами и реле запуска генераторной установки;
- контроль присутствия напряжения на нагрузке;
- удалённый запуск генераторной установки;
- счёт общего времени работы генераторной установки;
- контроль интервала техобслуживания генераторной установки;
- регистрация событий.

Плата контроллера имеет в своём составе часы реального времени (RTC), энергонезависимую память для регистрации событий контроллера, коммуникационный интерфейс (RS-485) для связи с ПК и другими периферийными устройствами.

5.2.2 Плата индикации и управления реализована на базе микроконтроллера и выполняет функции индикации измерений, режимов работы, тревог и ошибок, а также реализует возможность управления контроллером ABP.

5.3 Элементы индикации.

На передней панели контроллера расположены следующие элементы индикации (рис. 5.2):

- светодиодный трехразрядный цифровой дисплей (далее LED дисплей), отображающий измеряемые параметры, редактируемые параметры в режиме программирования контроллера, а также коды ошибок и аварийных состояний;
- светодиоды, индицирующие отображаемый на LED дисплее параметр:
 - L1, L2, L3 индикация напряжений;
 - Гц индикация частоты;
 - Сеть индикация параметров внешней электрической сети;
 - Ген. индикация параметров генераторной установки;
 - Часы индикация времени работы генераторной установки;
 - Акк. индикация напряжения аккумулятора;
- светодиоды группы РЕЖИМ для индикации режима работы контроллера:
 - Авто автоматический режим работы;
 - Сеть ручной режим переключения потребителя на внешнюю электрическую сеть;
 - Генератор ручной режим работы от генераторной установки;
 - Останов останов работы контроллера;
- ◆ светодиоды *L1* групп СЕТЬ и ГЕНЕРАТОР, которые индицируют состояние фазы сети и генераторной установки;
- ◆ светодиоды состояния контакторов →_, а также зажигания ¥ и стартера ⑤ генераторной установки;
- светодиод состояния аккумулятора генераторной установки
- 🛠 светодиод интервала техобслуживания генераторной установки 🛠;
- светодиод режимов «Эконом»/«Блокировка»

5.3.1 Светодиодная индикация измеряемых параметров, которые отображаются на LED дисплее, представлена в таблице 5.1.

						Габлица 5.1
	Светс	одиоды, і	индицир	ующие от	ображаемь	ій на LED
			диспл	iee napaw	leih	-
Параметр на LED дисплее	Сеть	Ген.	L1	Гц	Часы	Акк.
Напряжение сети L1-N (VAC)	•		•			
Напряжение ген. установки L1-N (VAC)		•	•			
Частота ген. установки (Hz)		•		•		
Время работы ген. установки * (час)		•			•	
Напряжение аккумулятора (VDC)		•				•

* - время работы генераторной установки может выражаться в часах и тысячах часов. Если время выражается в тысячах часов, то сначала индицируются тысячи часов с десятичной точкой в младшем разряде, а через 2 сек остаток времени в часах без десятичной точки. Такой режим индикации времени работы генераторной установки будет выполняться циклически, через 2 сек.

Рис. 5.2. Панель индикации и управления

5.3.2 В случае если измеряемый параметр недоступен или находится за пределами диапазона измерения, на LED дисплее отображаются три прочерка «- - -» (рис. 5.3).

Рис. 5.3. Индикация недопустимого значения

5.3.3 Индикация состояния фаз осуществляется светодиодами *L1* групп **СЕТЬ** и **ГЕНЕРАТОР**. Светодиода оды отображают состояние напряжений сети и генераторной установки. Свечение светодиода зелёным цветом означает, что соответствующее напряжение в норме. Отсутствие свечения означает, что напряжение ниже заданного уровня или отсутствует. Мигание светодиода зелёный/красный означает, что напряжение выше заданного уровня.

5.3.4 Индикация состояния аккумулятора осуществляется светодиодом 🗗. Светодиод светится зелёным цветом, если напряжение аккумулятора в норме. Если напряжение аккумулятора снижается до определённого уровня, то светодиод мигает красным, сигнализируя о разряде (за исключением периода включения стартера генераторной установки). При повышенном напряжении аккумулятора светодиод мигает двумя цветами – зелёный/красный. Значения нижнего и верхнего уровня напряжения аккумулятора, а также задержка контроля порогов аккумулятора устанавливаются из режима программирования контроллера (табл. 5.3, секция «Аккумулятор»).

5.3.5 Индикация интервала техобслуживания генераторной установки осуществляется светодиодом **%**. Светодиод светится зелёным цветом, если время работы генераторной установки после техобслуживания меньше порога предупреждения (80 ч*). В случае достижения данного порога происходит кратковременное мигание светодиода красным цветом. В случае достижения порога тревоги (100 ч*) происходит частое мигание светодиода красным цветом. Оба предупреждения сопровождаются прерывистым звуковым сигналом. Сброс интервала техобслуживания генераторной установки производится удержанием кнопки [**СБРОС**] в течение 2 сек.

* - значение по умолчанию, может быть изменено из режима программирования контроллера.

ВНИМАНИЕ!!! Первая замена масла в генераторной установке («обкатка») должна производится через количество часов, рекомендованное производителем генератора.

5.3.6 Индикация режимов «Эконом», «Блокировка» и «Полуавтоматический» осуществляется светодиодом 🗇. Светодиод непрерывно светится зелёным цветом, если активен режим «Эконом». При включённом режиме «Блокировка» - светодиод 🗇 светится красным цветом. В случае выбора режима «Полуавтоматический» светодиод 🗇 мигает.

5.3.7 Тревоги и неисправности отображаются на LED дисплее в виде специальных кодов и сопровождаются прерывистым звуковым сигналом. Коды индикации неисправностей контроллера представлены в таблице 5.2, коды тревог представлены в таблице 5.14. При наличии нескольких тревог или ошибок, их индикация выполняется поочерёдно, в цикле через 2 сек. Сброс тревог и ошибок производится кнопкой [**СБРОС**].

Коды индикации неисправностей контроллера			
Код	Описание		
E01	Внутренняя неисправность контроллера «Ошибка АЦП1»		
E03	Ошибка коммуникации между контроллером и панелью индикации		

5.4 Управление.

5.4.1 На панели индикации и управления (Рис. 5.2) расположены следующие элементы:

- кнопка [ИНДИКАЦИЯ] предназначена для выбора индикации измеряемого параметра на LED дисплее;
- кнопка [БОЛЬШЕ] предназначена для выбора основного режима работы контроллера, а в режиме программирования контроллера для изменения редактируемого параметра в сторону увеличения;
- кнопка [**MEHbШE**] предназначена для выбора основного режима работы контроллера, а в режиме программирования контроллера для изменения редактируемого параметра в сторону уменьшения;
- кнопка [**BBOД**] выполняет пуск выбранного режима работы контроллера, в режиме программирования контроллера выполняет ввод изменений редактируемого параметра;
- кнопка [**СТОП**] переводит контроллер в режим «Останов», в режиме программирования контроллера выполняет отмену изменений значения редактируемого параметра;
- кнопка [СБРОС] выполняет сброс тревог и ошибок, при длительном удержании (около 2 сек) выполняет сброс времени техобслуживания генераторной установки, в режиме программирования контроллера производит сброс значений всех параметров настройки по умолчанию;
- кнопка [ЭКО/БЛОК] управляет режимами «Эконом» и «Полуавтоматический, а при удержании кнопки (около 2 сек) включает (выключает) блокировку работы генераторной установки.

5.5 Режимы работы контроллера.

Четыре основных режима:

- «Авто»;
- «Сеть»;
- «Генератор»;
- «Останов».

Четыре дополнительных режима по убыванию приоритета:

- «Блокировка»;
- «Полуавтоматический»;
- «Удалённый запуск»;
- «Эконом»;

Режим программирования для изменения параметров контроллера.

5.5.1 Основные режимы работы.

Выбор режимов «Авто», «Сеть», «Генератор» осуществляется кнопками [БОЛЬШЕ] или [МЕНЬШЕ]. При этом мигает светодиод выбираемого режима из группы РЕЖИМ. Запуск выбранного режима выполняется кнопкой [BBOД], при этом соответствующий светодиод начинает светиться непрерывно.

5.5.1.1 Режим «Авто».

Режим «Авто» - автоматический режим контроля параметров сети и генераторной установки. В случае пропадания или недопустимого понижения (повышения) напряжения сети происходит цикл запуска генераторной установки (3 попытки старта*), прогрев (60 сек*) и переключение нагрузки на работу от генераторной установки. При запуске генераторной установки может выполняться управ-

ление топливной заслонкой. В случае восстановления нормальных кондиций сети и после времени стабилизации параметров сети (10 сек*) выполняется обратное переключение нагрузки на сеть. При этом генераторная установка ещё продолжает работать без нагрузки в течение заданного времени (30 сек*) для охлаждения, затем останавливается. Следующий автоматический запуск генераторной установки возможен не ранее, чем через заданный интервал времени (90 сек*). В случае аварии генераторной установки контроллер продолжает свою работу, отслеживая состояние сети, при этом работа генераторной установки блокируется до устранения и сброса аварийного состояния. Режим «Авто» устанавливается при подаче питания на контроллер.

* - значение по умолчанию, может быть изменено из режима программирования контроллера.

5.5.1.2 Режим «Сеть».

Режим «Сеть» - ручной режим переключения нагрузки на внешнюю электрическую сеть. В этом режиме если происходит превышение верхнего порога по, то нагрузка отключается от сетевого ввода и индицируется соответствующий код тревоги. После нормализации этих параметров нагрузка вновь подключается к внешней электрической сети.

ВНИМАНИЕ! В ручном режиме «Сеть» контролируется только превышение верхнего порога по напряжению. Другие параметры сети игнорируются.

5.5.1.3 Режим «Генератор».

Режим «Генератор» - ручной режим, позволяющий сразу начать процесс запуска генераторной установки с последующим переключением потребителя на работу от генераторной установки. При возникновении ошибок, тревог или неисправностей контроллер переходит в режим «Останов».

5.5.1.4 Режим «Останов».

В режиме «Останов» выполняется отключение всех контакторов и немедленная остановка генераторной установки. Контроллер переходит в режим «Останов» при нажатии кнопки [**СТОП**] или в случае аварийной ситуации и невозможности продолжения работы. Режим «Останов» индицируется красным светодиодом группы **РЕЖИМ**.

5.5.2 Дополнительные режимы работы.

5.5.2.1 Режим «Эконом».

Режим «Эконом» - дополнительный режим управления генераторной установкой. Этот режим активен при работе в режиме «Авто». В этом режиме генераторная установка по умолчанию работает по правилу час-через-три*, т.е. 1 час* работает и 3 часа* бездействует. Запуски и остановы генераторной установки выполняются автоматически. Формат работы генераторной установки может быть изменён из режима программирования контроллера. Режим «Эконом» не функционирует при работе в ручном режиме «Генератор» или при активации одного из режимов «Блокировка», «Полуавтоматический» или «Удалённый запуск». Режим «Эконом» включается и выключается простым нажатием кнопки [**ЭКО/БЛОК**] при отключенных режимах «Блокировка» и «Полуавтоматический». Активность режима «Эконом» индицируется непрерывным зелёным свечением светодиода 🗗.

* - значение по умолчанию, может быть изменено из режима программирования контроллера.

5.5.2.2 Режим «Блокировка».

В режиме «Блокировка» выполняется немедленный останов генераторной установки и блокировка её запуска в дальнейшем. Этот режим актуален как в режиме «Авто», так и в ручном режиме «Генератор». Режим «Блокировка» включается и выключается удержанием кнопки [**ЭКО/БЛОК**] (около 2 сек). Активность режима «Блокировка» индицируется красным свечением светодиода 🗗. 5.5.2.3 Режим «Удалённый запуск».

Режим «Удалённый запуск» позволяет управлять запуском генераторной установки дистанционно посредством программируемого входа. Функционирует только в режиме «Авто» при отключенном режиме «Блокировка». Параметры удалённого запуска устанавливаются из режима программирования контроллера (табл. 5.3, секция «Программируемые входы»).

Режим «Удалённый запуск» может быть необходим при совместной работе контроллера с источником бесперебойного питания (ИБП), который по сигналу разряда своего аккумулятора (АКБ) может выполнять запуск генераторной установки.

Пример совместной работы АВР и ИБП (рис. 5.4, рис. 5.5). Исходные условия:

- режим «Удалённый запуск» разрешён (Р220, табл. 5.3);
- тип контакта управления нормально разомкнутый (NO), т.е. активное состояние замкнутый контакт (P221, табл. 5.3);
- задержка на активацию входа t1 (рис. 5.5) будет определяться параметрами Р222 и Р223 (табл. 5.3);
- задержка на деактивацию входа t2 (рис. 5.5) будет определяться параметрами P224 и P225 (табл. 5.3).

Запуск генераторной установки начнёт выполняться через время задержки t1 после активизации программируемого входа и в случае недопустимых параметров сети. Процесс останова генератора (охлаждение без нагрузки t5) начнётся через время задержки t2 после деактивации программируемого входа. Если при работающем генераторе внешняя электрическая сеть восстанавливается, то останов генераторной установки начнётся через время t4, необходимое для стабилизации параметров сети, даже при активном сигнале управления от ИБП.

Рис. 5.4. Блок-схема совместной работы АВР и ИБП.

Рис. 5.5. Диаграмма работы в режиме «Удалённый запуск».

- t1 задержка на активацию входа;
- t2 задержка на деактивацию входа;
- t3 задержка определения недопустимых параметров сети (Р152, Р155, табл. 5.3);
- t4 время на стабилизацию параметров сети (Р174, табл. 5.3);
- t5 охлаждение генераторной установки без нагрузки перед остановкой (Р213, табл. 5.3).

5.5.2.4 Режим «Полуавтоматический».

Режим «Полуавтоматический» функционирует совместно с режимом «Блокировка» только в основном режиме работы «Авто». Этот режим позволяет выполнять однократный запуск генераторной установки при нарушении параметров электрической сети. После останова генераторной установки вследствие нормализации параметров сети, принудительного останова или аварийной ситуации, контроллер автоматически переходит в режим «Блокировка». Для возможности повторного запуска генераторной установки необходимо вручную отключить режим «Блокировка». Индикация режима «Полуавтоматический» осуществляется периодическим миганием светодиода 🛈. Если запуск генераторной установки разрешён, то светодиод 🛈 мигает зелёным цветом, а в случае запрета запуска – красным. Включение режима «Полуавтоматический» выполняется следующим образом:

- включить режим «Блокировка» (п. 5.5.2.2);
- после включения режима «Блокировка» необходимо трижды нажать кнопку [**ЭКО/БЛОК**] (задержка между нажатиями кнопки не более 1 сек).

Выключение режима «Полуавтоматический» также выполняется тройным нажатием кнопки [ЭКО/БЛОК].

5.5.3 Режим программирования контроллера.

5.5.3.1 Режим программирования позволяет редактировать значения параметров контроллера. Доступ в режим программирования может быть осуществлён только из режима «Останов». Для перехода в режим программирования необходимо нажать и удерживать кнопку [ИНДИКАЦИЯ] в течение 5 сек. При входе в режим программирования на LED дисплее отображается номер параметра для редактирования и три мигающие десятичные точки (рис. 5.6). Светодиод *Останов* мигает, все остальные светодиоды погашены. Выбор другого параметра для редактирования может быть выполнен с помощью кнопок [БОЛЬШЕ] или [МЕНЬШЕ].

Рис. 5.6. Пример: параметр №114, доступный для редактирования значения.

5.5.3.2 Для изменения значения выбранного параметра необходимо нажать кнопку [**BBOД**]. При этом на дисплее отображается значение параметра, и справа от дисплея мигают четыре светодиода, сигнализируя о готовности редактирования (рис. 5.7). Изменение значения параметра выполняется кнопками [**БОЛЬШЕ**] или [**МЕНЬШЕ**]. Применение нового значения производится кнопкой [**BBOД**], а отмена – кнопкой [**СТОП**].

Рис. 5.7. Пример: значение параметра №114.

5.5.3.3 В режиме программирования возможен сброс всех параметров по умолчанию. Для этого необходимо сразу после входа в режим программирования контроллера нажать и удерживать кнопку [**СБРОС**] в течение примерно двух секунд, пока на LED дисплее не появится индикация **dEF** (рис. 5.8). После того как параметры будут установлены по умолчанию, на дисплее снова отобразится номер текущего редактируемого параметра (рис. 5.6).

L1 🌒	🔍 Сеть	
L2 🕚	🔍 Ген.	1
L3 🕒	🔍 Гц	
Акк. 🌑	🔍 Часы	

Рис. 5.8. Индикация установки параметров по умолчанию.

5.5.3.4 Выход из режима программирования контроллера осуществляется нажатием кнопки [ИНДИКАЦИЯ]. Контроллер возвращается в режим «Останов» и готов к дальнейшей работе.

5.5.3.5 Изменение параметров контроллера также может выполняться с помощью ПК через порт RS-485. Параметры настройки контроллера представлены в таблице 5.3.

			Габлица 5.3	
	Параметры контроллер	a		
N⁰	Параметр	По умолчанию	Допустимые значения	
	Коммуникация			
114*	Modbus адрес контроллера	246	1 - 246	
115*	Проверка четности	None	None / Odd / Even	
116*	Скорость передачи данных	9600	2400 - 38400	
	Общие			
120	Номинальное напряжение (VAC)	220	100 - 500	
121	Номинальная частота (Hz)	50	50 / 60	
122	Задержка на срабатывание контакторов (сек)	1	1 - 255	
123	Интервал техобслуживания: предупреждение (часы)	80	1 - 999	
124	Интервал техобслуживания: тревога (часы)	100	1 - 999	
125	Время разрешения работы генератора в режиме "Эко- ном" (часы)	1	1 - 999	
126	Время запрещения работы генератора в режиме "Эко- ном" (часы)	3	1 - 999	
	Аккумулятор внешний			
140	Номинальное напряжение аккумулятора (VDC)	12	12	
141	Минимальное напряжение аккумулятора (%)	75	60 - 130	
142	Максимальное напряжение аккумулятора (%)	130	110 - 140	
143	Задержка контроля порогов внешнего аккумулятора (сек)	10	0 - 30	
	Контроль сети			
150	Нижний порог по напряжению сети (%)	80	60 - 100	
151	Гистерезис нижнего порога по напряжению сети (%)	3,0	0,0 - 10,0	

152	Задержка на срабатывание нижнего порога по напряже-	5	0 - 999
153	Верхний порог по напряжению сети (%)	115	100 - 120
154	Гистерезис верхнего порога по напряжению сети (%)	3.0	0.0 - 10.0
101	Задержка на срабатывание верхнего порога по напряже-	3,0	0,0 10,0
155	нию сети (сек)	2	0 - 999
174	Время стабилизации параметров сети (сек)	10	1 - 999
	Контроль генератора		
180	Нижний порог по напряжению генератора (%)	80	60 - 100
181	Гистерезис нижнего порога по напряжению генератора (%)	3,0	0,0 - 10,0
182	Задержка на срабатывание нижнего порога по напряже- нию генератора (сек)	5	0 - 999
183	Верхний порог по напряжению генератора (%)	115	100 - 120
184	Гистерезис верхнего порога по напряжению генератора (%)	3,0	0,0 - 10,0
185	Задержка на срабатывание верхнего порога по напряже- нию генератора (сек)	2	0 - 999
188	Минимальная частота генератора (%)	90	OFF / 80 - 100
189	Задержка на срабатывание нижнего порога по частоте генератора (сек)	10	0 - 999
190	Максимальная частота генератора (%)	110	100 – 120 / OFF
191	Задержка на срабатывание верхнего порога по частоте генератора (сек)	3	0 - 999
192	Время стабилизации параметров генератора (сек)	10	1 - 999
	Запуск генератора	I	
200	Число попыток запуска генератора	3	1 - 10
201	Пороговое напряжение для определения запуска генератора (%)	25	OFF / 10 - 100
202	Пороговая частота для определения запуска генератора (%)	30	OFF / 10 - 100
203	Задержка на включение стартера после включения зажи- гания (сек)	1	1 - 999
204	Максимальная длительность включения стартера генера- тора (сек)	5	1 - 255
205	Задержка на включение топливной заслонки после вклю- чения зажигания (сек)	2	0 - 999
206	Длительность работы топливной заслонки (сек)	10	0 - 999
207	Длительность включённого состояния топливной заслон- ки при адаптивном запуске (сек)	OFF	OFF / 1 - 999
208	Длительность выключенного состояния топливной за- слонки при адаптивном запуске (сек)	OFF	OFF / 1 - 999
209	Задержка после отключения стартера для проверки напряжения генератора (сек)	3	0 - 999
210	Длительность выхода генератора на рабочий режим по- сле запуска (сек)	60	1 - 999
211	Пауза перед повторным включением стартера генератора (сек)	10	1 - 999
212	Пауза перед следующим циклом запуска генератора (сек)	90	1 - 999
213	Задержка отключения зажигания для останова генератора (сек)	30	0 - 999
214	Режим включения топливной заслонки при запуске генератора	Каждый запуск	Каждый запуск / Чётный запуск / Нечётный запуск

215	Ограничение времени работы топливной заслонки после ОFF ОFF		OFF / 1 - 999
	Программируемые входь	bl	
220	Функция входного контакта 0.0 ("Своб. вход")	Отключено	Отключено / Удалённый запуск
221	Тип входного контакта 0.0	NO	NO / NC
222	Задержка реакции на замыкание контакта 0.0	0,0	0,0 – 99,9
223	Единицы измерения времени задержки реакции на за- мыкание контакта 0.0	сек	сек / мин / час
224	Задержка реакции на размыкание контакта 0.0	0,0	0,0 – 99,9
225	Единицы измерения времени задержки реакции на раз- мыкание контакта 0.0	час	сек / мин / час

* - для применения нового значения параметра требуется перезагрузка контроллера.

5.5.3.6 Некоторые параметры контроллера имеют числовые эквиваленты значений, для отображения их на LED дисплее (табл. 5.4 - 5.11).

Таблица 5.4

115*. Проверка четности			
Значение параметра	Числовая индикация на LED дисплее		
None	0		
Odd	1		
Even	2		

* - для применения нового значения параметра требуется перезагрузка контроллера.

Таблица 5.5

116*. Скорость передачи данных			
Значение параметра	Числовая индикация на LED дисплее		
2400	0		
4800	1		
9600	2		
14400	3		
19200	4		
28800	5		
38400	6		

* - для применения нового значения параметра требуется перезагрузка контроллера.

Таблица 5.6

121. Номинальная частота (Hz)	
Значение параметра	Числовая индикация на LED дисплее
50	0
60	1

Таблица 5.7

140. Номинальное напряжение аккумулятора (VDC)		
Значение параметра	Числовая индикация на LED дисплее	
12	0	

214. Режим включения топливной заслонки при запуске генератора		
Значение параметра Числовая индикация на LED дисплее		
Каждый запуск	0	
Чётный запуск	1	
Нечётный запуск	2	

Таблица 5.9

220. Функция входного контакта		
Значение параметра	Числовая индикация на LED дисплее	
Отключено	0	
Удалённый запуск	1	

Таблица 5.10

221. Тип входного контакта		
Значение параметра	Числовая индикация на LED дисплее	
NO (нормально разомкнутый)	0	
NC (нормально замкнутый)	1	

Таблица 5.11

223. Единицы измерения времени задержки реакции на замыкание контакта		
225. Единицы измерения времени задержки реакции на размыкание контакта		
Значение параметра	Числовая индикация на LED дисплее	
сек	0	
мин	1	
час	2	

5.6 Регистратор событий контроллера.

5.6.1 Регистратор событий контроллера (далее – регистратор) позволяет в режиме реального времени отслеживать и сохранять в энергонезависимой памяти как внешние, так и внутренние ключевые события в работе контроллера АВР. События контроллера могут быть пяти типов:

- ошибки;
- тревоги;
- флаги состояний;
- управление;
- изменение параметров.

Считывание событий регистратора может быть осуществлено только посредством ПК с помощью специального программного обеспечения.

5.6.2 Типы и коды событий контроллера представлены в таблицах 5.12 – 5.15.

Коды ошибок контроллера		
Код	Описание	
E01	Внутренняя неисправность контроллера «Ошибка АЦП1»	
E04	Неисправность памяти регистратора	
E05	Неисправность часов реального времени	
E06	Сброс от сторожевого таймера	
E07	Ошибка калибровки	
E08	Ошибка диапазона измерения напряжения сети L1-N	
E11	Ошибка диапазона измерения напряжения генератора L1-N	
E15	Ошибка диапазона измерения частоты генератора	
E16	Ошибка диапазона измерения напряжения АКБ	

Коды тревог контроллера		
Код	Описание	
A01	Ошибка при запуске генератора	
A02	Генератор не запустился за установленное число попыток	
A03	Пониженное напряжение генератора	
A04	Повышенное напряжение генератора	
A05	Пониженная частота генератора	
A06	Повышенная частота генератора	
A09	Неожиданная остановка генератора	
A10	Неисправность контактора генератора	
A11	Аварийный останов генератора	
A20	Неисправность одного из контакторов	
A50	Неисправность контактора сети	
A51	Пониженное напряжение сети	
A52	Повышенное напряжение сети	

Таблица 5.14

Коды флагов состояний контроллера		
Код	Описание	
S00	Запуск контроллера	
S01	Низкое напряжение сети L1-N	
S04	Низкое напряжение генератора L1-N	
S07	Высокое напряжение сети L1-N	
S10	Высокое напряжение генератора L1-N	
S19	Низкая частота генератора	
S20	Высокая частота генератора	
S21	Низкое напряжение аккумулятора генератора	
S22	Высокое напряжение аккумулятора генератора	
S23	Интервал ТО. Предупреждение!	
S24	Интервал ТО. Тревога!	
S25	Работа генератора	
S26	Запрет работы генератора в режиме "Эконом"	
S27	Контактор сети	
S30	Контактор генератора	
S31	Реле "Зажигание"	
S32	Реле "Стартер"	
S33	Реле "Топливная заслонка"	
S34	Наличие напряжения на нагрузке	
S35	Низкое питание контроллера	
S37	Стабилизация параметров сети	
S40	Стабилизация параметров генератора	
S41	Наличие переменного напряжения (ZCD [*]) сети L1-N	
S44	Наличие переменного напряжения (ZCD [*]) генератора L1-N	
S47	Кнопка "Аварийный останов"	
S50	Состояние программируемого входа 00	
S51	Функция программируемого входа 00	

* - ZCD (zero-cross detector) детектор перехода напряжения через нулевой уровень.

Коды команд управления		
Код	Описание	
C00	Режим "Останов"	
C01	Режим "Авто"	

C02	Режим ручной "Сеть"
C05	Режим ручной "Генератор"
C06	Режим блокировки генератора
C07	Режим генератора "Эконом"
C08	Режим «Полуавтоматический»
C10	Сброс контроллера
C11	Сброс всех тревог
C12	Сброс времени работы генератора
C13	Сброс интервала ТО генератора
C14	Установка пароля доступа для изменения системных параметров
C15	Установка параметров по умолчанию
C16	Установка часов реального времени
C17	Новое время установлено

5.6.2.1 Событие регистратора: изменение параметров.

Данный тип события возникает при изменении значения какого-либо параметра контроллера (табл. 5.3). Код данного типа события формируется исходя из номера параметра, значение которого изменилось. Например, при изменении параметра №120 фиксируется событие Р120 с указанием даты и времени события, а также нового значения данного параметра.

5.7 Часы реального времени контроллера.

5.7.1 Часы реального времени (RTC), встроенные в схему контроллера, предназначены для учёта хронометрических данных (текущие дата и время), которые необходимы для регистрации событий контроллера. Часы реального времени обладают источником независимого резервного питания, что обеспечивает непрерывную работу часов реального времени, даже при отсутствии общего питания контроллера.

5.7.2 При необходимости, дата и время могут быть изменены из режима установки даты и времени контроллера, а также посредством ПК с помощью специального программного обеспечения.

Доступ в режим установки даты и времени через панель управления контроллера может быть осуществлён только из режима «Останов». Для перехода в режим установки даты и времени необходимо, удерживая кнопку [**СТОП**], нажать другие кнопки в следующей последовательности:

- два раза нажать кнопку [МЕНЬШЕ];
- три раза нажать кнопку [БОЛЬШЕ];
- четыре раза нажать кнопку [ИНДИКАЦИЯ].

После этого отпустить кнопку [**СТОП**]. При входе в режим установки даты и времени будет доступно редактирование шести параметров представленных в таблице 5.16. Индикация и управление в этом режиме такие же, как и в режиме программирования контроллера (п. 5.5.3). Выход из режима установки даты и времени осуществляется нажатием кнопки [**ИНДИКАЦИЯ**]. Контроллер возвращается в режим «Останов» и готов к дальнейшей работе.

Дата и время RTC		
N≌	Параметр	Допустимые значения
001	Год	0 - 99
002	Месяц	1 - 12
003	День	1 - 31
004	Часы	0 - 23
005	Минуты	0 - 59
006	Секунды	0 - 59

6. Установка и подключение

6.1 Установка контроллера.

Монтаж заключается в установке корпуса контроллера на заранее подготовленную поверхность согласно габаритным размерам.

6.2 Подключение контроллера.

Перед подключением и запуском контроллера необходимо изучить настоящее техническое описание.

ВНИМАНИЕ!!! Монтажные и пусконаладочные работы должны выполнять организации или лица, имеющие необходимую квалификацию.

6.2.1 Предохранитель, разъёмы и клеммы для подключения контроллера расположены с тыльной стороны корпуса контроллера (рис. 6.1). Описание клемм и разъёмов представлено в таблице 6.1. Назначение контактов указано в таблицах 6.2 - 6.6. Подключение внешних электрических цепей к контроллеру осуществляется согласно рекомендуемой схеме подключения (рис. 6.2).

Рис 6.1. Клеммы и разъёмы подключения контролера (вид сзади).

Таблица	6.1
таолица	0.1

Элементы	Описание	
подключения		
XS1	Разъём подключения внешнего устройства (RS-485)	
XS2	Клеммы подключения кнопки «Аварийный останов»	
XS4	Разъём контроля наличия напряжения на нагрузке	
XS5	Разъём управления генераторной установкой	
XS6	Разъём измерения напряжений сети и генератора	
XS7	Разъём управления контакторами	
F7	Предохранитель питания схемы коммутации реле запуска генератора (10А)	

6.2.1.1 Клеммы XS2 предназначены для подключения кнопки «Аварийный останов», которая обеспечивает экстренный останов генераторной установки на любом этапе процесса запуска, работы или нормального останова. Конструктивно кнопка «Аварийный останов» состоит из двух независимых нормально замкнутых контактов (NC). Назначение контактов XS2 представлено в таблице 6.2.

ВНИМАНИЕ! Длина проводников подключения кнопки «Аварийный останов» не должна превышать 1м, также проводники подключения кнопки не должны проходить в непосредственной близости от силового электрического оборудования и кабелей.

Таблица 6.2

XS2 - клеммы подключения кнопки «Аварийный останов»		
Номер контакта	Назначение	
1	Вход подключения нормально замкнутого контакта NC1	
2	Вход подключения нормально замкнутого контакта NC1	
3	Вход подключения нормально замкнутого контакта NC2	
4	Вход подключения нормально замкнутого контакта NC2	

6.2.1.2 Разъём XS4 предназначен для подключения цепей контроля наличия напряжения на нагрузке. Данная функция контроля необходима для повышения безопасности переключения силовых контакторов. Назначение контактов разъёма XS4 представлено в таблице 6.3.

Таблица 6.3

XS4 - разъём контроля наличия напряжения на нагрузке		
Номер контакта	Назначение	
1	Вход контроля нагрузки N	
2	Вход контроля нагрузки L	
3	не подключается	
4	не подключается	

6.2.1.3 Разъём XS5 предназначен для подключения управления генераторной установки, а также для подключения питания контроллера. Назначение контактов разъёма XS5 представлено в таблице 6.4.

Таблица 6.4

XS5 - разъём управления генераторной установкой		
Номер контакта	Назначение	
1	Аккумулятор [–]	
2	Аккумулятор [+]	
3	Питание схемы коммутации реле [+] (после предохранителя F7)	
4	Программируемый вход ("Своб. вход")	
5	Стартер (NO)	
6	Стартер (NO)	
7	Зажигание (NO1)	
8	Зажигание (СОМ1)	
9	Зажигание (NC1)	
10	Зажигание (NO2)	
11	Зажигание (СОМ2)	
12	Зажигание (NC2)	
13	Управление топливной заслонкой (NO)	
14	Управление топливной заслонкой (NO)	

6.2.1.4 Разъём XS6 предназначен для подключения цепей измерения входных напряжений сети и генератора. Назначение контактов разъёма XS6 представлено в таблице 6.5.

		Таблица 6.5
XS6 - разъём измерения напряжений сети и генератора		
Номер контакта	Назначение	
1	Вход измерения напряжения сети L1	
2	Вход измерения напряжения генератора L1	
3	не подключается	
4	Нейтральный провод N	
5	не подключается	
6	не подключается	
7	не подключается	
8	не подключается	

6.2.1.5 Разъём XS7 предназначен для подключения силовых контакторов (табл. 6.6).

Таблица 6.6

XS7 - разъём управления контакторами		
Номер контакта	Назначение	
1	не подключается	
2	не подключается	
3	не подключается	
4	не подключается	
5	Релейный выход 1 для управления контактором генератора	
6	Релейный выход 2 для управления контактором генератора	
7	Релейный выход 1 для управления контактором сети	
8	Релейный выход 2 для управления контактором сети	

6.3 Меры безопасности.

При эксплуатации контроллера необходимо руководствоваться действующими правилами техники безопасности при эксплуатации электроустановок, а также:

- не включать контроллер без заземления;
- перед включением контроллера убедиться в правильности подключения всех электрических цепей;
- не прикасаться во время работы контроллера к токоведущим частям, находящимся под напряжением, не подключать и не отключать кабели при наличии напряжения на соответствующих разъемах и клеммах;
- при ремонте и обслуживании контроллера все работы выполнять после отключения питания.

Рис 6.2. Пример схемы подключения контроллера АВР11КН.

* - схема подключения цепей «Зажигание» зависит от типа генераторной установки и может отличаться от показанной на рисунке.

7. Транспортирование и хранение

7.1 Транспортирование.

Контроллер ABP может транспортироваться всеми видами транспорта, с соблюдением правил перевозки грузов действующих на данном виде транспорта, в упаковочной коробке при условии защиты от прямого воздействия атмосферных осадков и пыли. Контроллер ABP должен транспортироваться в условиях, не превышающих заданных предельных условий хранения.

7.2 Хранение.

Контроллер ABP допускает хранение в упаковке в закрытых складских помещениях, обеспечивающих сохранность изделия от механических воздействий и загрязнений из окружающей среды, не содержащей агрессивных паров и газов.

Хранение контроллера должно производиться в следующих условиях:

- температура воздуха от -25°С до +60°С;
- относительная влажность воздуха до 80% при температуре +25°С.

Гарантия на всю продукцию «Порто Франко» - 24 месяца с даты продажи.

Дата изготовления:	Дата продажи:
Серийный номер:	Организация:
Модель:	
	Гарантия:
	Подпись, печать организации: